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lterative algorithms for solving numerically a nonlinear radiative transfer equation 
with inadequate data are presented and tested by numerical simulations. It is found 
that these iterative algorithms do give excellent results. 

1. INTRODUCTION 

Remote sensing problems in atmospheric, oceanic, and geophysical sciences can 
be formulated often as “improperly posed” problems in mathematical analysis. 
To solve these problems is equivalent to constructing approximate solutions of 
operator equations, whose solutions often are nonunique and do not depend 
continuously on the given data, from inadequate (or insufficient) data with or 
without errors. Since early nineteen sixties, various inversion techniques have been 
developed for these problems [see, for example, Fleming and Smith [I], Conrath 
and Revah [23 (excellent reviews), Backus and Gilbert [3-51, Franklin [6], 
Tihonov [7,8], Lavrentiev [9, lo], etc.]. In particular, the method of Backus and 
Gilbert (B & G) not only provides an inversion technique but also can be used as 
a diagnostic tool for testing the intrinsic resolution of a given set of data for a given 
problem. Although B & G’s inversion technique is applicable to nonlinear 
problems, it does not appear to be fully developed, and in this regard, two iterative 
algorithms for constructing approximate solutions of nonlinear problems from 
inadequate data have been presented and their theoretical aspect has been discussed 
by Chen and Surmont [l l] recently. 

It is the purpose of the present paper to demonstrate the applicability of the 
two iterative algorithms of Chen and Surmont [ 1 I] to a nonlinear radiative transfer 
equation with inadequate data, which is often encountered in the remote sensing 
of atmospheric temperature profiles. In particular, radiance measurements in two 
CO, absorption bands (15 pm and 4.3 pm), observed by the High Resolution 
Infrared Radiation Sounder (HIRS) of the National Oceanic and Atmospheric 
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Administration, within a nonscattering atmosphere in local thermodynamic 
equilibrium are employed. Upon using the technique of B & G (equivalent to the 
first iteration of the iterative algorithms of Chen and Surmont [l I]), Conrath [12] 
has calculated the intrinsic vertical resolution of temperature protiles obtained 
from remote radiation measurements in the 15 pm CO, absorption band. Similarly, 
Chen, Woolf, and Smith [13] have obtained the intrinsic resolutions of temperature 
profiles obtained from remote radiation measurements in the 4.5 pm, 15 pm, and 
4.3 pm + 15 pm CO2 bands separately, and it is found that the combination of 
4.3 pm and 15 pm bands is superior to the other two individual cases for all levels 
of the pressure, especially in the upper troposphere and the stratosphere. 

A brief review of the formulation of B & G in terms of the nonlinear radiative 
transfer equation is given in the next section. Next, the iterative algorithms of [l l] 
are presented in Section 3. Then discussion and comparison are made in the last 
section. Finally, the Appendix serves partially as a bridge between the theoretical 
aspect of [I l] and the practical aspect of the particular nonlinear radiative transfer 
equation in this paper. It should be noted that the following computational 
formulations can be applied directly to noisy data only if they are properly 
modified [5, 111. 

2. THE METHOD OF BACKUS AND GILBERT 

For a nonscattering atmosphere in local thermodynamic equilibrium, the 
radiation emitted at frequency v is given by the integral form of the radiative 
transfer equation, 

where 

W(P), ~1 = cl~3/~expk24Wl - 11, 
cl = 1.19061 x 1O-5 erg-cm2-set-l, 

c2 = 1.43868 cm-deg(K) 
(2) 

is the Planck function for the temperature T(p) at the pressure p (in mb); the 
independent variable x can be any monotonic function of p (X = lnp being used 
here); p. is the surface pressure; and ~(p, v) is the transmittance of the atmosphere 
above pressure p at v. 

In the remote sensing of the atmospheric temperature profiles, measurements of 
radiances in a finite number of spectral intervals within atmospheric absorption 
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bands are performed. The inversion problem then is to estimate the temperature 
profile T(p), given the atmospheric transmittances +, V) and measurements of 
the radiances {I(v&, i = I, 2 ,,.., m. If the contribution from the nonlinearity of (1) 
is small, then only the first iteration of the iterative algorithms of Chen and 
Surmont [l I] or the procedure of B & G [3-51 will be sufficient for our purpose. Let 

T(P) = To(P) + m4 (3) 

where T,(p) is the initial or reference profile and is taken to be the U.S. standard 
atmosphere. Then from [l 11, PI(p) should be the solution of the linearized equation 

where 
s 2o K[x, Vi] Qx) dx = 6Z(vJ, i = 1, 2,. .., m, (4) -02 

zqx “,I = ww)7 %I ddx, 4 9 I dT To dx ’ 

WV,) = BVdx,), vi1 dxo , vi) - s Q B[T,(x), vi] 9 - Z(vi), (6) -cm 

and dB/dT is the functional derivative of BIT]. It can be shown that the integral 
operator of (1) has Frechet derivatives when T(x) belongs to C, the space of 
continuous functions (Appendix). 

The weighted average of F1 at x which gives heavy emphasis to points close to x 
and very little to distant points is defined by 

@A = j-z 4, x’) fXx’> dx’), (7) 

where the averaging kernel A is normalized according to 

s DO A(x, x’) dx’ = 1. (8) -m 

It is obvious that (PI), is the most localized weighted average if and only if the 
averaging kernel A resembles the Dirac delta function 8(x’ - x) most closely. 
The spread of A from x is defined by 

Q(x, A) E OIJ j-z J(x, x’) A2(x, x’) dx’, (9) 

where J(x, x’) is a chosen infinitely differentiable function of x’ such that .7(x, x) = 0 
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and increases monotonically as x’ increases or decreases away from x with 
dimension of (x’)~, and 

OIJ = J”-“~ J(x, x’) f4 &-c, x’) dx’ (10) 

with 
A,(x, x’) = l/1, x - l/2 < x’ < x + 112, 

0, 1 x’ - x 1 >, z/2. 01) 

Note that 
ecx, 4 = 1 (the spread of A,). WI 

Actually, if A has a sharp peak, the choice of J is rather free. However, if A has 
a blurred peak, the selection of J is much more critical. Throughout, 

is used and then olJ = 12. 

J(x, x’) = (x - x’)2 (13) 

Equation (4) shows that {SZ(V,)}, i = 1, 2,..., m, are m bounded linear functionals 
of PI(x). Since (PI), and {SZ(vJ}, i = I,2 ,..., m, all depend linearly on the function 
f1 , it follows that (PI), must depend linearly on {SZ(vJ}, i = 1, 2,..., m. Therefore, 
there should exist constants {ai(x i = 1,2,..., m, depending on the fixed point x 
such that 

(Tl), = f Q(X) f3Z(V,). (14) 
i=l 

Hence, from (4) and (7), 

A(x, x’) = f Q(X) zqx’, Vi]. (15) 
i=l 

It follows from (9) and (15) that Q(x, A) is a positive-definite quadratic function of 
{q(x)}, i = 1, 2 ,..., m. Since the determination of the most localized weighted 
average {2‘,), is equivalent to minimizing the spread of A from x subject to the 
constraint (8), by using the method of Lagrange multipliers, the proper set of {ai(x 
i = 1, 2,..., m, satisfies the following set of m + 1 linear algebraic equations: 

Fl 124 1-z (X - X’)’ K[X’, ~$1 K[X’, ~51 dx’l Uj(X) + A J:l K[X’, vi] dx’ = 0, 

i = 1, 2 ,..., m, 
(16) 

g is_“, JW> ~1 dx’l M> = 1, 

where A is a Lagrange multiplier. 

5W3b9 
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The vertical resolution of the temperature profile at the level x obtainable from 
a given set of radiance measurement is determined by the closeness of A(x, x’) to 
6(x’ - x). Visually, the plot of A(x, x’) vs x’ gives a qualitative estimate of the 
vertical resolution at x. To characterize the behavior of A(x, x’) more precisely, 
the “resolving length” of A(x, x’) is introduced and defined as the spread about its 
center, 

where 

w(x) = 12 JXO [C(X) - x’]2 P(X, x’) dx, (17) -CL 

c(x) = I’” x’#(x, x’) dx’/j- A2(x, x’) dx’ 
--m -cc 08) 

is the “center” of A(x, x’). 
The center frequencies of the seven channels (i = 1,. . ., 7) in the 15 pm CO2 band 

and the five channels (i = 8,. .., 12) in the 4.3 pm CO2 band in our study are 
668.5, 680.0, 690.0, 703.0, 716.0, 733.0, 749.0 (cm-l) and 2190.0, 2210.0, 2240.0, 
2270.0, 2360.0 (cm-l), respectively. The numerical data of T(X~ , JJJ and 
dT(x, vJ/dx lZeZk, i = 1, 2 ,..., 12, k = 1, 2 ,..., 200, are furnished by the National 
Environmental Satellite Service, NOAA, and the dr(x, v,)/dx(p) vsp curves are 
given in Figs. 1 and 2 of [13]. The integration is performed numerically by using 
the Simpson’s rule. The integration limits are -2.3026 and 6.9078 (Z x,,) instead 
of -co and 6.9078. This is because the dT(x, vi)/dx, i = 1, 2,..., 12, are negligible 
for x < -2.3. 

3. ITERATIVE ALGORITHMS AND NUMERICAL SOLUTIONS 

Two iterative algorithms [ 1 I] for constructing approximate solutions of the 
nonlinear radiative transfer equation (1) from inadequate data will be presented 
here. These algorithms are basically hybrids of Newton’s iterative methods in 
Banach spaces [14] and the inversion technique of B & G described in the previous 
section. 

Method I (Modzjied Nexton’s Method) 

The (n + 1)th approximate solution of (1) is defined by 

<T,,+Jo = To(x) + if: <TM - TA > n = 0, 1, 2 ,..., (19) 
j=O 
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where CT,+, - Td , assumed to be unique, is the best approximate solution 
(in the sense of B & G) of the linearized equation, 

I 4 dmo, 4 
--m dT I T,(r) 

y [Tn+l(x) - T,(x)] dx 

= BWA, 9 v] 7(x0, v) - j” B[(T,), , v] v dx - Z(v), (20) 
-02 

where 

dBPW, ~3 
dT = 

clc2v4 evkdW91 
[T(x)12{exp[cz~/T(x)1 - 0” ’ (21) 

from the given inadequate data Z(vJ i = 1,2,..., 12. 

Method II (Newton’s Method) 

The (n + 1)th approximate solution of (1) is defined by 

(T,,), = T,(x) + 5 (T,+, - TJ, . n = 0, 1, 2 ,...) (22) 
j=O 

where CL+, - W, , assumed to be unique, is the best approximate solution of 
the linearized equation 

I So dB[T(x), v] 
-m dT <Tn& 

y [T,+l(x) - T,(x)] dx 

= BK’LJ,, 9 v] ~(xo , v) - 1” B[(T,), , V] y dx - Z(v) (23) 
-02 

from the given inadequate data {Z(vi)}, i = 1, 2,..., 12. 
Due to great dificulties in obtaining the estimates of the various operators in the 

theorems [ll], it is futile to apply these theorems directly in practice. Instead, one 
has to evaluate the performance of the above two iterative algorithms numerically. 
Since the HIRS is not in operation yet to provide the real measurements of the 
radiances Z(v;), i = l,..., 12, a numerical simulation must be carried out. The 
procedure is that, the solution of the nonlinear radiative transfer equation (I), T(x), 
is first assumed and then Eq. (1) is numerically integrated to give Z(Q); from these 
radiances, an approximate solution of (1), (T*), , is obtained by using either one 
of the above two iterative algorithms. Other than the round-off and numerical 
integration errors, the quantity II T(x) - (T”), II can be used as a criterion for 
evaluating the performance of the iterative algorithm. Although only functions in C 

are considered, L2 norm is used here because of its integrated effect. 
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With double precision in the computation, four examples, (a) smooth T(x) with 
small II T(x) - T,,(x)//, (b) zigzag T(x) with small II T(x) - TO(x)ll, (c) smooth T(x) 
with large 11 T(x) - T,,(x)//, and (d) zigzag T(x) with large /j T(x) - T,,(x)jl, are tried 
and their numerical results are plotted in Figs. 1, 2, 3 and 4, respectively. 

4. DISCUSSION 

For the case (a), Fig. 1 shows that the accuracy of ten iterations of Method I 
(i = l,..., 12) is equivalent to three iterations of Method II (i = l,..., 12). This 
means that Method II converges faster than Method I. However, the computation 

FIG. 1. Comparison of Methods I and II for smooth T(p) with small 1) T(p) - T,(p)ll and 
i = 1, 2,..., 12. - T; - - - T0 ; - - - <Ts>, i = l,..., 12; a*** <Tlo>, i = l,... 12. 
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is longer for obtaining (T3)$ than (T&J~ . The approximate solutions 
are extremely good for 1000 mb > p > 200 mb, uniformly and reasonably 
good for 200 mb > p > 0.2 mb. Upon examining the numerically computed 
norms II T - (TA II T - (LX ll<Tn+l> - (TJI and II<Tn+l - (WI, and 
Figs. 1-4, it is found that both iterative algorithms converge to the same limit 
CT*>, . 

For the case (b), Fig. 2 shows again that the accuracy of ( Tlo)z is approximately 
equivalent to that of (T3)$, and it takes longer to compute (T3)2 than (T&+ . 
Again both iterative algorithms converge to the same limit (T*), . These approx- 
imate solutions are remarkably good for 1000 mb 3 p > 200 mb (even catching 
the temperature inversion) and reasonably good for 200 mb > p > 0.3 mb. 

220 240 260 280 
Temoe~oture IK”) 

Fm. 2. Comparison of Methods I and II for zigzag T(p) with small 11 T@) - T,(p)/ and 
i = 1,2 ,..., 12. - T, --- TO ; - - - <Z’&, i = l,..., 12; .** (T,), i = l,,.. 12. 
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FIG. 3. Comparison of Methods I and II for smooth T(p) with large /I T(p) - ~,(p)lI and 
i = 1, 2,..., 7.---T; ---To; ---<I-&, i= 1 ,..., I; ... <Ta>, i = l,..., 7; -k + -t <TI), 
i = l,..., 12 and {T,), i = l,..., 12. 

For the case (c), Fig. 3 shows that both iterative algorithms with i = I,..., 12 
encounter numerical instability. This is because the ratio of the largest element to 
the smallest of the matrix in (16) is of O(105). To avoid these kinds of difficulties, 
both iterative algorithms with i = I,..., 7 are used. Again it is found that 
(TJs (i = l,..., 7) N (T,,>, (i = I,..., 7) and both iterative algorithms converge 
to the same limit ( T*>x . These approximate solutions with i = l,..., 7 are remark- 
ably good for 1000 mb > p > 200 mb, reasonably good for 200 mb > p > 30 mb 
and poor for p < 30 mb. It is interesting to notice that (T,), (i = l,..., 12) is a 
much better approximation in the range, 0.1-5 mb, than either (T3>, (i = I,..., 7) 
or <T& (i = I,..., 7), before it encounters the numerical instability in the range, 
5-1000 mb. This is understandable, because 12 channels has better performance 
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index (weighted linear combination of resolving length and correct centering) in the 
upper stratosphere than that of seven channels [13]. This shows that for the case of 
12 channels (4.3 pm + 15 pm CO, bands), if the initial guess T,,(x) deviates very 
much from the true solution T(x), the iterative algorithms are more likely to 
encounter the difficulty of numerical instability; however, if only seven channels 
(15 pm CO, band) are used, the aforementioned numerical instability will not be 
encountered. Similarly, this is true for the case (d) (Fig. 4). 

...,... ., 
_.,......... 

_ .,,.,,, 
” ,. _. ,, 

200 220 240 260 280 

Temperature iK-1 

FIG. 4. <T), obtained by Method I for zigzag T(p) with large 11 T(p) - T,(p)11 and i = 1,2, . . . . 7. 
--;---To; ---(T,,>,i= l,..., 7; ... (T,),i= l,..., 12,and<T,),i= l,..., 12. 

Samples of numerically computed L2 norms are given in Table I. 
In view of the previous discussion, Method I is better than Method II in actual 

computation. The best practical approach is to use Method I with seven channels 
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for the first few iterations to avoid possible numerical instability and then to switch 
to Method I with 12 channels to catch the fine details of the approximate solutions. 

APPENDIX 

The fact that if the solutions of (1) belong to C[u, b], then that nonlinear integral 
operator has Frechet derivative will be shown in the following: Let 

Then 

N[u, v] E B[u(b), v] ~(b, v) - j-” B[u(x), v] & (x, u) dx, 
a 

D:a<x<b, c<v<d, o<u<co, 

T(b, V) be continuous on [c, d], and 

&(x, v)/~x be continuous on [a, b] x [c, d]. 

K(x, v, u) = B[u, v] aT(x, vyax, 

&‘(x, v, u) = c1c2y4 expbMx)l a+, 4 
u”(x){exp[c,+(x)] - l}” ax’ 

Kbk, u) = JG44, ~1 & d, and 

w2v4 expk2~/4b)l 
(&)u'("y '1 = u2(b){exp[c,v/u(b)] - I}2 T(b' ') 

are continuous on D. Let 

u(x) E Q{u E C[u, b]; u > 0 for every x E [a, b]} C Bl = C[a, b] 
and 

I(v) E B, = C[c, d]. 

Then the nonlinear integral operator of (l), 

P[u, V] = N[u, V] - I(V) maps Q into B, . 

THEOREM. Fur every u(x) E Sz and every U(X) E Bl , P,‘[u, v] (Bl -+ B2) is the 
Frkchet derivative of P[u, v] at u(x), where 

P,‘[u, v] * v(x) = (&)u’(v, u) * v(b) - j-b K,‘(x, v, U) * v(x) dx. 

Proof. It follows from the continuity of &&‘(u, V) and K,‘(x, v, u) that P,‘[u, v] 
maps Bl into B2 . 
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From the expression of PU’[u, V] above, it is obviously a linear operator. Next, 
from the definition of P,‘[u, v], 

where 

&clc2d4 ~xpW/u@N 
” = u2(b){exp[c,c/u(b)] - l}” ’ 

L 
2 

= K2clc2d4 ex~h~/~l(~ - 4 
m2{exp[c2c/M] - l}” ’ 

K, = m,ax I TVA 4, 

K, = ma? 1 87(x, v)/~x /, 

m = mm u(x) and m,ax u(x) = M. 

Hence, Pu’[u, V] is bounded. 
Finally, to show that 

I/ Ejl = 11 P,‘[u] . v - ‘[’ + “;I - p[ul /I+ 0 for t -+ 0 

uniformly with respect to v(x) where jl u jj = 1, from the definitions, one obtains 

I E j < 1 (Z&‘(v,u) . v(b) - Kb(“’ ’ + ‘y - K’(” ‘) / 

+ ) sb /K,‘,~, v, u] . v(x) - K[xy VP ’ + “; - K[xy ” “‘1 dx / 

a 

Then 

/ El 1 < 1 U(b)1 ( (&)u’(v, U) - Kb(v’ ’ + 2 - Kb(v’ ‘) 1, 7 = tu(b) 

= j v(b)] I(K,),’ - (Kb);+sr 1, 0 < 0 < 1, by the mean-value theorem, 

d m,ax I G4l cl = e1 II v II, for / 7 I = I I v(b)1 < 6,, 

due to the Continuity Of (&,&&'. 
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Similarly, I E, 1 < E..# - a) 11 u(x)jj, for 1 T(X)/ = 1 t I I u(x)/ < 6, . Then I E I < 
[Ed + (b - a) E.J jl v(x)lj = E II u /I, for every v E [c, 6]. That is 

Ii p u ‘[“I . u _ m + toI - ml 
I! G ~I/~// for t I t / < 6, ; 6, . 

Since II u(x)ll = 1, the above statement is equivalent to the statement which we want 
to show. Hence, by the definition of the FrCchet derivative [14], the theorem is 
proved. 
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